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Objectives

Objectives

The problem formulation:
m Several large scale offshore wind farms are planned to be built
far from the shores in the future.

m Several computational approaches can improve the business
and risk decision on these projects. Modeling is essential part
of project cycle.
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Atmospheric physical scales and wind resources
rid scales
kets and Economics

Scales of the wind energy systems and models in space and time

m The forecasts are computed using mathematical equations for
the physics and dynamics of the atmosphere.

m These equations are nonlinear and are impossible to solve
exactly. Therefore, numerical methods obtain approximate
solutions.

m Global models often use spectral methods for the horizontal
dimensions and finite-difference methods for the vertical
dimension, while regional models usually use finite-difference
methods in all three dimensions.

m Poles usually needed to be treated seperately unless it is using
geodesic grids and icosahedral grids, which (being more
uniform) do not have pole-problems.
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Scales of the wind energy systems and models in space and time

Data Assimilation

Background or
first guess

Observations (+/-3 h)

Global analysis (statistical
interpolation) and balancing

Initial conditions

Global forecast model

h 6-h forecast

(Operational forecasts)

All the data assimilation methods; filter and nonlinear filters, ensemble data assimilation methods follow the similar

procedure.4-D Var, Ensemble Kalman filter, Reduced Kalman filter, Particle Filter, etc.
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Ensemble Data Assimilation

a) Chaotic system b) Stable system; It can be combination of
different runs or different NWPs.
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Scales of the wind energy systems and models in space and time

Macroscale: Met Tower Optimization

Observation Locations

Initial observation network 1025]
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The method is feasible for both macroscale and mesoscale wind prediction. (Uzunoglu,B., Computer Methods in

Applied Mechanics and Engineering 196, 4207-4221, (2007))
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Errors involved for the full network and optimized network are
minimal.
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Atmospheric physical scales and wind resources
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Ensemble size control; initial investigation shows significant reduction in ensemble size control for computational
cost of wind prediction. Uzunoglu,B. et al., Adaptive ensemble member size reduction and inflation, Quarterly

Journal of Royal Meteorological Society Vol 133, Issue 626, Pages 12811294, July Part A (2007).
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Atmospheric physical scales and wind resources
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Analysis RMS error for: east-west wind component (msl ), The results are obtained using three different methods:
Correlated-KPZ method gave better results. The observation error standard analysis cycle deviation is indicated by
a dotted line. Zupanski,, M., Fletcher. F, Navon., I.M, Uzunoglu,B., Heikes,R.P. , Randall, D.A, and Ringler, T.D.,

Tellus 58 A, 159-170 (2006).
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Scales of the wind energy systems and models in space and time

1000-member

Model error EnKF mean rms PFGR mean rms
variance x y z x ¥ z

0 216 349 349 169 271 287

2 229 375 381 220 356 355

4 240 387 373 215 346 328

6 300 495 489 240 390 385

8 267 440 417 233 385 321

10 355 567 532 256 422 417

0 203 327 323 164 265 277

2 234 384 387 222 360 368

4 251 406 398 223 350 350

6 309 515 502 226 379 368

8 261 431 411 328 508 457

10 346 575 554 295 485 467

Nonlinear filters can perform better but they are computationally limited: Results for Lorenz equation. Xiong,X.,

Navon., I.M and Uzunoglu,B, A Particle Filter with Posterior Gaussian Resampling; Tellus 58 A, 456460 (2006).
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Ensembles in Wind Industry

Transmission congestion forecast.
System balancing forecast.

Short term spot market prediction.
Ramp prediction and uncertainty.

Energy risk management.

Good forecasts minimize reductions in spot forecast prices and
reduce overall energy cost; Perfect forecast to less
over-commitment.

m GL forecaster, Predictor, Anemos, Zephyr, Previento are some
tools that already employ ensembles for prediction.
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Cost of Forecast.
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Data Mining
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Data Mining
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Scales of the wind energy systems and models in space and time

Large Eddy Simulation

Frame 001 | 07 May 2012 | volume solution
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Large Eddy Simulation

Frame 001 | 07 May 2012 | volume solution
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Scales of the wind energy systems and models in space and time

Frame 001 | 07 May 2012 | Plot3D DataSet

Vorticity field for
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Scales of Electricity Grid
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Scales of the wind energy systems and models in space and time

Scales of Electricity Grid Turkiye
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Security and Contingency analysis
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Security and Contingency analysis
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The first topology

In the first topology, the offshore wind farms are connected to an
HVDC converter platform through offshore AC collector platforms.

HVDC Converter Platform
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The second topology

In the second topology, the offshore AC collector platform is
removed from the circuit and the offshore wind farms are
connected directly to offshore HVDC converter platform.

HVDC Converter Platform

Rectitiers
33k Bus
HVDE Flatform Converter
Transtarmer

Feeders [1] @ A @ BE BE BB B EE 0 E & e
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Wind Turbine Configuration DFIG

Siemens 6 MW offshore wind turbine model is used for this study.
Two types of wind turbine generators i.e. DFIG and FC generators
are investigated. These are the some of the most common wind
turbine generators which are currently being used in the market.
The 6 MW DFIG is selected with following specifications:

Specifications

Apparent Power(MVA) | 6.667
Rated Voltage(kV) 0.69
Nominal Frequency(Hz) | 50
Stator Resistance(p.u) | 0.01
Stator Reactance(p.u) | 0.1

Table : Specifications of DFIG from DIgSILENT
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Wind Turbine Configuration FC

m The short circuit contribution from HVDC (from grid side) is
chosen as 150% of apparent power of the wind farms cluster
initially and 50% thermally.

m Two cases are investigated for short circuit analysis. In the
first case, short circuit analysis of an offshore wind farm
cluster connection to HVDC converter platform with and
without using offshore AC collector platforms is simulated. In
the second case, short circuit analysis at the feeders in the
absence of offshore AC collector platform is simulated.
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The inner array and export cable specifications

m The inner array cables connect the individual wind turbines, in
each feeder, to AC collector platform of each wind farm. The
length of the cable between two wind turbines is kept at 0.9
km. The length of the cable between the wind turbine and
offshore AC collector platform is kept at 2.5 km while in the
absence of offshore AC collector platform; three different
lengths are chosen i.e. 1 km, 5 km and 10 km.

m Three export cables are used to connect three different
offshore wind farms to offshore HVDC converter platform.
Three different lengths i.e 1 km, 5 km and 10 km is chosen.
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The main transformer configuration.

The offshore wind farms are connected to the main transformers
placed on offshore AC collector platforms. Each wind farm has its
own step up transformer which raises the voltage from 33 kV to
155 kV.

m The eight feeders of the offshore wind farm A are connected
to a three winding transformer having 444 /222 /222 MVA
capacity and voltage transformation 155/33/33 kV.

m The five feeders of the offshore wind farm B are connected to
a two winding transformer having 280 MVA capacity and
voltage transformation 155/33 kV.

m The four feeders of the offshore wind farm C are connected to
a two winding transformer having 170 MVA capacity and
voltage transformation 155/33 kV.
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Loss Analysis

m The offshore wind farm connection contains cables, bus bars,
transformers, shunt reactors and offshore AC platform which
contribute to the electrical losses.

m Following assumptions were made. 70 kW losses are assumed
at low loads for shunt reactors having 15 MVAr. The
capacitor losses can be neglected. The zero load losses for
main transformers are approximately 0.026% of the apparent
power for large transformers and 0.08% of the apparent power
for small transformers. The offshore AC collector platform
losses are considered to be 100 kW. The load losses and zero
load losses add up to make total losses of the connection.
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Loss Analysis

25 7
5 4
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z 66 kV without AC
Platform
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a T T 1

1km Skm 10km

Figure : (a) Comparison of the total energy loss (normalized) GWh /year
of the offshore wind farm cluster link for different distances between wind
farms and HVDC platform
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Loss Analysis
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Figure : (b) Comparison of energy loss (normalized)in GWh /year of three
wind farms for different distances between wind farms and HVDC
converter platform for 66 kV without AC collector platform
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Scales of the wind energy systems and models in space and time

Short Circuit Analysis
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Figure : Short circuit current oscillogram
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Short Circuit Analysis

m Several different methods for short circuit analysis. Some
methods like IEC 60909/VDE 0102 method, the ANSI
method and the IEC 61363 method require less detailed
network modeling i.e. require no load information.

m The superposition method which is also known as complete
short circuit method is used for the precise evaluation of the
fault currents in a specific situation.
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Short Circuit Analysis

The short circuit contribution from HVDC (from grid side) is
chosen as 150% of apparent power of the wind farms cluster
initially and 50% thermally.

Parameters

Method Complete

Fault Type | 3-phase Short Circuit
Calculate Max. Short Circuit Current

Table : Parameters for short circuit method from DIgSILENT
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Short Circuit Analysis
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Figure : Short circuit currents(normalized)in kA at HVDC converter
platform bus for different connection options and different types of wind
turbine generators (a) Iy for a 804 MW Wind Farm
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Short Circuit Analysis
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Figure : Short circuit currents(normalized)in kA at HVDC converter
platform bus for different connection options and different types of wind
turbine generators (b) i, for a 804 MW Wind Farm
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Short Circuit Analysis
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Figure : Short circuit currents(normalized)in kA at HVDC converter
platform bus for different connection options and different types of wind
turbine generators(c) i for a 804 MW Wind Farm
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Short Circuit Analysis
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Figure : Short circuit currents(normalized)in kA at HVDC converter
platform bus for different connection options and different types of wind
turbine generators(c) i for a 804 MW Wind Farm
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Figure : Peak short circuit breaking current (normalized) (ip)in kA at

individual feeders for two different types of wind turbine generators in the
absence of AC collector platform
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Short Circuit Analysis
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Figure : Peak short circuit breaking current (normalized) (ip)in kA at
individual feeders for two different types of wind turbine generators in the
absence of AC collector platform
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Parameter State, Parameter Estimated State and Particle Paths

16 T T
m— Parameter State
151 = m m Pyrameter Estimated State [
Patticle Paths
1.4f
13 il
1.2 7

Pararneter

09

0a

07|

500

L
1000 1500
Days

Figure : Daily electricity prices for Alberta simulated.
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Electricity market price estimation

Parameter State, Parameter Estimated State and Particle Paths
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Figure : Exponential of estimated parameter versus exponentials of
parameter state and particle paths of 10000 particles.
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Electricity Prices Observed and Filtered

State

Figure : Exponentials of daily electricity prices for Alberta observed

versus filtered.
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Scales of the wind energy systems and models in space and time

Electricity market price estimation
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Figure : State filtered by using optimum parameter set.
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Conclusions

Conclusions

The problem formulation:

Several computational possibilities in different disciplines
present themselves. There is a spectrum of numerical
methods which can be used for different needs of industry.

The transformer removal possibility in an offshore wind farm
has been investigated.

Data mining is a tool that has been introduced.

Particle filter to electricity price models have been introduced.
Observation stations can be optimized.

Optimization of wind farms needs attention and validation.

Operation and Maintenance work and SCADA data analysis is
being developed.
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